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ABSTRACT

This report considers the irrotational motion of an incompressible, inviscid
liquid contained in mobile tanks of arbitrary shape. Hydrodynamic equations

are derived for six degrees of freedom. All quantities are written in terms of

a coordinate system which moves with the tank. The pressure, forces, moments,
and surface wave height are all obtained in terms of nondimensional parameters,
For tanks with an axis of symmetry and three degrees of freedom, these equations
are matched with corresponding equations of motion of two mechanical systems:
spring-mass and pendulum.
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Components of the unit exterior normal
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Undisturbed liquid height in the tank, from the liquid's c.g.
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axis of symmetry
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SECTION 1
INTRODUCTION

The effect of liquid propellant motions must be considered in the design of most liquid-
rocket-powered missiles and space vehicles., For the most part, the propellant motion
problem is one of missile stability and control. Generally, the propellant motion
interacts with both the control system dynamics and the vehicle dynamics, which also
couple with each other. The natural frequencies of the oscillating propellants are

often closer to the rigid body control frequencies of the vehicle than to the elastic

body frequencies. Indeed, if the natural frequencies of the propellants in the tanks
become too close to the control frequency of the vehicle or the natural frequency of

the control sensor, the situation may become critical. Under these circumstances,
the oscillating propellants exert large forces and moments, which, in turn, may satu-
rate the control system and ultimately lead to structural failure of the vehicle, Thus,
the response of the forces and moments exerted by the oscillating propellants on the
vehicle must be sufficiently well defined analytically that the effects can be integrated
into analyses of the overall system dynamic behavior. Generally, this is accomplished
by a synthesis of the appropriate hydrodynamic equations, in which equivalent mech-
anical (mathematical) models composed of sets of simple spring-mass-dashpot or
pendulums are devised. These are then combined with similar representations for
other dynamic elements of the vehicle, and thus the overall svotem dynamic behavior
can be determined by analog or digital techniques.

For the most part, recent papers in the field deal with specific details regarding the
dynamic behavior of liquids in moving tanks under diverse conditions. The methods used
in the majority of these studies are varied, and the assumptions are based on certain
approximations which are often rather confusing and difficult to justify. It is beyond
the purpose of this short review to discuss all these papers in detail, However, a study
of these past efforts discloses a lack of agreement as to the exact analytic statement

of the problem. In many instances the boundary conditions are in error, especially at
the free liquid surface when the tank is undergoing pitching excitation. Generally,

these errors can be attributed to conceptual misunderstandings, some of which, from
one point of view fortunately, have not been particularly significant when the tank has
been considered as rigid, or when the fundamental equations have been linearized.

Methods for calculating the dynamic response of liquids in moving tanks have been
developed for cylinders of circular, elliptical, and rectangular cross sections with

flat rigid bulkheads. These solutions make use of the technique of separation of vari-
ables. In fact, since the pertinent differential equation for the liquid behavior is
Laplace's equation, a linearized solution can be found for any rigid cylindrical tank
whose cross section is such that Laplace's equation is separable in the three dimension-
al cylindrical coordinate system, one of whose coordinate surfaces is the tank cross-
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sectional boundary. Nevertheless, new and unusual tank configurations warrant con-
sideration in the design of present day missiles and aerospace vehicles.

The object of this report is to rigorously derive the pertinent hydrodynamic equations
for a missile tank of arbitrary shape which is allowed six degrees of freedom -- three
rotational and three translational. Since the registering and control instruments used
on missiles and aerospace vehicles are generally mounted directly on the vehicles,

it is clear that measurements recorded on these are referred to vehicle-fixed or liquid
tank-fixed axes, which are thus axes moving with respect to some inertial frame, It
then becomes particuarly convenient to write all quantities, both absolute and relative,
in terms of the moving coordinate system. It is in connection with the form of the
equations of motion and the boundary conditions referred to tank-fixed axes that
apparent conceptual misunderstandings have arisen in the literature,
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SECTION 2

DERIVATION OF EQUATIONS FOR SLOSHING MOTIONS
IN TANKS OF ARBITRARY SHAPE

2.1 BASIC EQUATIONS FOR SIX DEGREES OF FREEDOM. Consider a mobile tank
of arbitrary geometry, partially filled with a perfect incompressible liquid. Suppose
the tank to be subjected to a constant or nearly constant acceleration along a given
direction. Then, in the absence of all other accelerations, the free surface of the
liquid in the tank becomes a plane normal to the direction of constant acceleration;
i.e., this axis is colinear with the exterior normal to the undisturbed free surface of
the liquid in the tank. Assume the tank to undergo angular and linear accelerations
in three mutually orthogonal directions, one direction being the direction of constant
acceleration. These disturbances are presumed to be small; the squares and products
of these quantities and their derivatives are small in comparison with the quantities
themselves, hence they will be neglected (i.e., only linear effects are considered).

It is convenient to refer the motion of the liquid to a translating and rotating coordinate
system fixed in the tank. In the ensuing analysis, the convention used is that Latin
indices take on the values 1,2,3. If in some expression an index occurs twice, the
expression is to be summed with respect to that index over its range of values.

Let y; be the coordinates of a point referred
to a Cartesian coordinate system, y;, fixed in
space, and let xjbe the coordinates of a trans-
lating and rotating system, x;, (see Figure 1).
The origin of the system Xx; is assumed to be
located at the undisturbed center of gravity of
the liquid. The coordinates of the two systems
are related by

¥i= 2t 34 % (2.1) .

Xj = a4 (¥ -2) (2.2)

Figure 1. Coordinate Systems

It $ i are components of a vector referred to y;, the components, &i, of this vector in
system x; are related to 4; by

5 = ay 3, (2.3)

1.91 = aji 1.9j (2~4)
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In (2.1) through (2.4), z; (components measured in the fixed system) measures the
instantaneous displacement of the origin of x; with respect to the origin of ¥ij, and

ajj = cos (xi,yj) measures the instantaneous rotation of the x; axis with respect to Y-
The ajjare functions of time satisfying the equations

3jk jk = by (2.5)
where 5ij is the Kronecker delta; i.e.
0 if i#j
ﬁi- =
! 1 if i=j
and
daJk
3k g~ - “€ijk Yk (see Appendix A) (2.6)

where ‘ijk is the alternating tensor; i.e.
1 if ijk is a cyclic permutation of 1,2,3

€5jk = -1 if ijk is an acyclic permutation of 1, 2, 3

0 if any two subscripts are equal

The w;

j are the components of the angular velocity as measured in the rotating system.,

Differentiate (2.1) with respect to t to get

- dy; dz; [gq d’ﬁ
Ll *[7%]’5- oG @7
dyj )
The components of T referred to the moving system are
dy; dz; [ day; dx;
%= TN RS N E (2-9)

Use (2.5), (2.6), and the properties of the alternating tensor to reduce (2. 8) to

d
dzi
where y; = i 3 are the components of the translational velocity of the origin of Xj

referred to the system Xj.
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Referred to a fixed axis, the Eulerian equations of motion for an incompressible liquid
are

op

e 2,10
>Y; (2.10)

2la
o]
e
[}
ol
o
H
oI~

where Fi are the components of the body force vector, p is the pressure, p is the den-

d
sity of the liquid, and T represents the total (material) derivative,

From (2.7) and (2, 8)
gi=apde and gk = 8k g (2.11)
Differentiate the first equation in (2.11) with respect to t,

M _ 3 d - 2.12
‘[aaik]qk’“aikd—tqk (2.12)

Then use (2.6), (2.10), and (2.11) to obtain

dg; = 1 ap
or
dg; 13
- .2 9oPp
at | Cikj Yk 95 T Fy b 5, (2.14)

In (2.14) F; = a;, f‘k are the components of the body force measured in the moving
system, x;, and

3p Yk _ap [9% 3
op _ 9op =3P vay 65l = 2y o (2.15)
dXj 3yk 33X dY¥k J J ¥k
Substitute the value of q from (2.9) into (2.14) to obtain
dui . dwk
—+ €, U: + 2€.y,. Wy, —+ €., — X,
a * Cikj “k Yj ikj "k qt ~ “ikj dt
2
d 19dp
+ €:p.; Wy €5p00 W +—x-=F.-——— (2.16)
ikj “k €j¢m “2 *m i~ ¥
! a2 P dx
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du;

dX'
Let a = d—tl + ‘ikj wy uj and d_tl = v;, where the a; are the components of the absolute

acceleration of the origin of the translating and rotating system, X;, in that system,
With this notation, (2.16) becomes

4 +2 =F d—wk—
V1™ %€k “k Vi T i T A T €Gkj gp
1 3p
" il €itm “k ©4%m T 5 5y (2.17)
(Recall that €;; ) €0, = 8ip Sks - 85 Bikp) (2.18)

Referred to the moving axis, the equation of continuity for the Eulerian viewpoint is

)

©

+-—a—_ [pvi] =0 (see Referencel, p. 12) (2.19)
9 Xj

o

t

For an incompressible liquid
20, 2P _
at+viaxi-0 (2. 20)

Thus it follows from the continuity equation that

e}
g;i Vi =0 (2. 21)

If the liquid in the tank of the missile behaves as an irrotational liquid
3V o A

E = ;1: (2.22)

Differentiate (2.17) with respect to xj and assume that the orders of differentiation
may be interchanged to obtain

2
22N, 2N S S Tk s
at3x; ) 3axax “iki “k 3% " ax; 1 %) € ¢ Oij

J

) 6 -1— aZP av'avi

(2. 23)



The first term on the left hand side of (2. 23) vanishes because of the incompressibility

condition. The second term vanishes because of irrotational motion

Vi AV

(‘ikj Wi S;J = €jki Wk 3% (interchange dummy indices)
{ .
J

3Vj
= €jki ¥k a_x: (from 2, 22)

avj
= ~€jkj “’kg;i

and a quantity equal to its negative must equal zero.)

The first term on the right hand side of (2.23) vanishes because F; -a, is independent

of x;; the second term vanishes because €ji; = 0. From (2.18)

~€ikj €jni T ~€kji €jni

=k bjn - Bkn 85)

-(6kn - 36kn) = 26yy,

Thus (2. 23) reduces to

1 3%, 2N
p 3X; 3% 71 ax;9x

Linearize (2, 24) to obtain

32p

l op _ 0 (in the volume of the liquid)
P 3% 3%

(2. 24)

(2. 25)

which must be solved subject to boundary conditions at the free surface and the tank

walls.

The boundary conditions may be obtained from the principle of continuity which states
that the liquid and boundary surface with which contact is maintained have equal com-

ponents of velocity normal to the surface. Let x'i* be the coordinates of a surface

measured relative to the tank-fixed coordinate system, x;. Then the boundary condi-

tions may be expressed on all surfaces as

S
ViViTVi X
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(In the remaining analysis a total time derivative in the moving system is designated
by a dot.)

To use (2.17), linearize the equation to obtain

. . 1 3p
Y= Fj e Ok 5 (2.27)

Since the normal vector is assumed to be independent of time, differentiate (2.26) with
respect to t and substitute the value of {'i from (2. 27) into the resulting expression to
obtain

. 1 3p] %
Vi [Fi T kg Yk Y T, 'a'?l] =V X (2.28)
Thus, the boundary conditions are
lap Fi - aj - €5; O X; - % (over all surfaces) (2. 29)
leaxi Vi |18 "€k Yk %5 X .

2.2 FORMULATION OF BOUNDARY VALUE PROBLEMS

2.2.1 Definitions. The problem at this point is to solve the partial differential
equation

———— =0  (throughout the volume of the liquid) {2.30)

subject to (2.29). For convenience, let ¢(x) ~ #(xq, Xg, xg) etc. in the following
discussion. To simplify this problem, let

%: - X+ L2¢i o - lcbl Xy x3+<bz x; x3+d:3 X, x2] + @ + C(t) (2.31)

where
bi = (%)
¢ = ¢(x,t)
@;= -F; +a

@g is assumed to be constant (constant thrust) and L is the distance between the
undisturbed center of gravity and the undisturbed free surface of the fluid, measured
along the xg-axis
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32y, ) 32 5

= =0 (2.32)
an ax]‘ axj BXj

The boundary conditions for y; are defined over all surfaces as

awl 2x3 ) 33
Vi axl - L2 V2 ( . )
e = — 2,34
Vigx "2 V3 (2.34)
L = ——— 2.35
Vi axi L2 V1 ( )

The form of (2.31) and conditions (2.33), (2.34), and (2.35) are chosen so as to make
the boundary conditions (2. 29) reduce to the simple form of (2. 38). Substitute the
value of P from (2.31) into (2.29) and make use of the boundary conditions on the ;
to obtain

vi %’i = -y; x’f (over all surfaces) (2.36)
Thus

vy ai-::- =0 (along the rigid tank surfaces) (2.37)
and

viga—)-j—; = -ui')i’i* (at the free surface of the liquid) (2.38)

Assume that the free surface of the liquid is given by
F= [L+nx, x0, t)] 6, (2. 39)
i NiXy. 22, i3 .

7 is assumed to be small (small shallow oscillations) so that the normal to the middle
surface is approximated by the normal to the undisturbed free surface; i.e.

Vi~ 0i3 (2.40)

on the free surface of the liquid, and the value of aéil on the free surface is approxi-
mately equal to its value at x3=L. Thus, (2.38) becomes

(a%z%>x3=L =7 (2.41)



2.2,2 Forces and Moments., The dynamic condition used to determine 7 is that the
pressure be independent of position on the free surface., On the free surface the pres-
sure is given by

(B) =C(t)-a3L+[—a1x1-a2x2—a3n+L2¢id)i
P x3=L+r’

- cbl Xg (L+m) - &g x1 (L+7) - g X X, + qb] (2.42)

Thus, the dynamic condition requires that the bracketed term in (2.42) must vanish,
Assume that

®1) ~ @1)

Xg=L+n X3=L

(9

~ (¢
x3=L+n )X3=L

and that w; varies slowly in time; thus products of cbi with itself and with n are suffi-
ciently small in comparison with the terms themselves that these products may be
neglected. Thus

azn=-a1 X1 - ag Xg + L2 lpi (:Ji - (:)1 x2 L - (1)2 Xl L -(;)3XIXZ+¢ (2.43)
where §, and ¢ are evaluated at x5 = L

Consider the free vibrations of a system, described by

2 N
0% ¢
3%, ax(: =0 (throughout the volume of the liquid)
3%,
az %o o 3o _ (at the undisturbed free surface
3¢2 3 34 of the liquid, x3= L) )

Assume ¢ = ¢_>0 (%1 Xy Xg) e“t to obtain
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) :
224,

3% a%; =0 (throughout the volume of the liquid) )
3¢
v, > =0 (at the tank walls) L (2.45)
193 Xi
3¢ 2
SR (at x5 = L) )

Let the eigenfunctions be given by ¢, (Xq,Xg,x3) and the corresponding values of w?

2 .
by wg . Define K, by

Kmn

(2.46)

Then the ¢, have the properties

2
3" % n

S;ia_x{ =0 (throughout the volume of liquid) A

3 ®mn
Vi Sx. 0 (at the tank walls) p (2.47)

and

@D [o<]

P = Z 2 Am ®mn eiwmnt

m=1 n=1

Assume that the eigenfrequencies and eigenfunctions associated with this boundary
value problem have been determined. Express ¢ andn in terms of the eigenfunctions
for the free vibration; i.e., assume

¢ (x1,%2,%3,t) = 2 2 Am(® ¢ nt*1: X2, X3) (2. 48)
m=1 n=1
and
n(xl'x2’t) = Z Z gmn(t) ¢mn(x1lx2l L) (2.49)
m=1 n=1
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The relationships between the X (t) and £ mrft) are determined from (2. 41), using

the properties of ¢,y (X1,X9, Xg) in (2.47) as follows.

(M) i f A (t)a¢mn( Xg, L) ]
. = ~ . Xl' 2
%3 X3=L m=1 n=1 e 9%3
had x® Kmn
= X 2 Amn® —1— PmnlX1, %2, L)
m=1 n=1 >
= i
=- Zm, f E_ (1) ¢ (x1,%3,L)
m=1 n=1 0 8 )

Since this relationship must hold for all X1,Xg, and t

L,
N =~ Ena®
and
= L .,
Ot xp 35,8 == 3 3 K_ Smn Pmn(*1:%2:%3)
m=1 n=1

Thus, from (2. 31), the pressure is given as

p . . . .
-5=C(t) —aixi+L2¢)iwi —[wl x2x3+w2xlx3+w3x1x2]

® L ..
1 :/._:1 Kmn E o Pont®10 %20 %3)

?Ms

With this formulation, boundary condition (2.43) becomes

L ..
Z Z [ mngmn+ o3 Emn| Pmn (X, X2s L) = -ap X1 - ay X2
m=1 n=1

: : 2 .
—(xy L - L2 1) &1 - (%) L - L2 py) dg - (%] Xg - L° 3) 3

(2. 50)

(2.51)

(2.52)

(2. 53)

(2. 54)

where the §; on the right side of the equation are evaluated at x3 = L. Assume that the
right side of (2.54) may be expanded in terms of ¢>ij(x1, X9, L). This expansion will be
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valid at least in the interior of the region. By making use of the orthogonality proper-
ties of the ¢ij’ (2. 54) can be rewritten in the form (see Appendix B for details)

. mn
Emn o3 7€~ "Kmn 2mn %1 - Kmn Prmon @2

“LKmn [bmn - hmn] w1 - LKmn Iamn - dmn]wZ

—LKmn [emn - fmn] wg (2. 55)
where

3V Ymn = _[ X} PyndS
UFS

bron Vg = / X9 @1 4
UFs

Us

dmn VEmn Ymn = 2/ X1 $mn V3 dS
UsS
(2. 56)
emn ¥ L ¥Ymn = f X1 Xg $mn dS
UFS

fon VEmn Ymn = 2/ X9 ®mn V1 dS
Us

V=L (byp?ds
UFS

V= / av
uv

Y mn
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The forces on the liquid-tank system have the components, referred to the x;-axis

fpy ds = fpvJGIJdS /pu———ds

=fxi 2 aa_p ds (Theorem HI)
S g
f axl (Theorem I) (2.57)

In the equations above, the surface integrals are over the entire surface of the liquid
(i.e., over the free surface and tank walls), and the volume integral is over the entire
volume occupied by the liquid, Substitute the value of the pressure from (2. 53) into
(2. 57) to obtain (see Appendix C for the details)

@ ©

F¥=-Mao; - M Zl Zl Ymn (3mp 637 + bp 6;0) £ 0 (2. 58)
m=1 n=

where M = pV is the mass of the liquid.

The moments may be calculated from

Ty =/ eijkxjvkpds
S
=f €. 2 (x;p) dV (Theorem J)

_/eljk X 3%, g,xk dv (2.959)

Substitute the value of _a_p from (2. 53) into (2. 59) to obtain (see Appendix D for the
details) Xy

T;= - [111 641 ~Ip1 839 - 131 513] - W ['112 611132 842 ‘1325i3]

- “’3[ I13 641 - Iz 6;9+ I33 613] M Z El 7mn“L(bmn
m=1 n=
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- bmn) Emn +agbmy, gmnl 6i1 + IL(amn - dpyn) Emn
- Q@3 Amnp ﬁmnl 6i2 +| L(emn - fmn) Emn|513l (2.60)

where

I, = p/ (x2 +x3)dV 4p/ X4 dV+2pL2/x;3w1u2dS W
uv Us

= 2
Il—p—/ xlxde—ZpL / xllpll/3d8
uv Us
= 2
I l—pf X; XgdV-2pL f Xg v dS
uv Us

L, p/ X] X9 dV - 2pL /x3¢2v2ds
Us

Iyg = p/ (X +X3 )yav - 4pf X dV+2pL fx1¢[)2U3dS \ (2.61)
uv

uv

113 p/X1X3dV+2pL / 3 3U2dS
uv

2
123=p/x2x3dV+2pL fxld)3v3dS
uv USs

I3 = pf(x +x2)dV 4pf x2 dv + 2pL fle/)3u1ds )
uv Us

and the other constants are given by (2. 56).
2.2.3 Results. For a mobile tank with arbitrary geometry, subject to acceleration
and having six degrees of freedom (three translational and three rotational), the per-

tinent quantities have been obtained. That is,

a. The moments are given by (2.60).

b. The forces are given by (2.58).
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¢. The pressure is given by (2. 53).
d. The surface wave height is given by (2.49).

The eigenfunctions in these equations are given by the solutions of the following bound-
ary value problems.

2 2
3 ¢m O a,bk

axi axi = 5%,0%; =0 (through the volume of the liquid) (2.62)
3¢
mn
Vi 3w 0 (at the tank boundary) (2.63)
i
9?mn Kmn _
3% = L ¢mn (on the quiescent free surface) (2. 64)
3
oY1
Vi g{—l— = 2x3 Vo (over all surfaces) <\
Yy
L2 Vi ~a—xT = 2%y vg (over all surfaces) e (2.65)
Y3
2 _
Ly X 2x2 V1 (over all surfaces) J

These boundary value problems cannot be solved until a specific tank shape is given,
For the special case where the tank has an axis of symmetry and three degrees of free-
dom, it is possible to develop a technique to obtain the eigenfunctions and eigenvalues
numerically. This is done in Reference 2.

The £,,,, are given by (2.55), where the Kmn are given by the solution to the above
boundary value problem.
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SECTION 3

DEGENERATE CASE (THREE DEGREES OF FREEDOM)

3.1 REDUCTION OF THE EQUATIONS FROM SECTION 2.

If the problem is described

by one translational component, one rotational component, and the constant accelera-
tion along the axis of the missile, the computations involved in finding the pertinent

quantities will simplify as shown in the following paragraph.

In the equations of the previous sections, let Wwg = Wg = Uy = 0.

The moments (from 2,60) become

Tj = - @ [111 bi1 ~ 121 652 - Is1 513]'“"%21 nz_:lynm“L(bmn ~byn) Emn

+ a3 by €mp '611 + IL(amn ~dmn) €mn %3 2mn gmnl 059

+ {L mn ~ fn) Emnl 613]

The forces (from (2, 58)) are

o] @

N .
Fi'=- a3 M85 -Magbip-M 2 ¥ ¥Ymn(2mnbi1 *Pmnbi2) Eran

m=1 n=1

The pressure (from (2.53)) is

The surface wave height (from (2.49)) is given by

nxX2,t) = 2 3 Epn() o (%1,%5, L)
m=1 n=1

3-1

(3.1)

3.2)

(3.3)

(3.4)



where the ¢mn is given by the solution to the boundary value problem described by
(2.62), (2.63), and (2.64) and the £ are given from

K
. mn .
Emn+a3 = Ern = 'Kmnbmn @y - LKpy [bmn 'hmn]“’l (3. 5)

3.2 RESULTS FOR AN AXIS OF SYMMETRY. In most cases of interest, especially
in the design of missiles and launch vehicles, the tank is symmetric or nearly sym-
metric about the axis of constant acceleration, the Xg-axis, For this situation the
equations for three degrees of freedom are further simplified. Refer the tank to
cylindrical polar coordinates defined by

x1=rcose
Xg =T 8in @ (3.6)
X3=Z

Since the tank is symmetric about the xg-axis, the undisturbed boundary surface of
the liquid enclosed by the tank is a surface of revolution formed by revolving a curve,
shown as ABC in Figure 2, about the x3—axis.

The origin O is located at the undisturbed

z center of gravity of the liquid. The curve

A-B is formed by the tank profile, and the
1B curve B-C is formed by the intersection of
the quiescent free surface and a plane paral-
lel to and including the x5-axis. The line
L AOC is given by the portion of the line r=0,
which is interior to the liquid volume. In
some cases (e.g., a tank formed with con-

- O
™

o) > centric cylinders), points A and C may
coincide, Then, C does not necessarily lie
d on the xg-axis.
For cylindrical polar coordinates, the com-
A ponents of the exterior normal are given by
vy = sin B cos 8
Figure 2, Arbitrary Tank
Cross Section vy = sin 8sin 6 3.7)
vg = —cos B



where 8 is defined by

on the curve ABC.
The element of arc length is given by

d32 = dz2 csc2 B = drz sec2 B

(3.8)

(3.9)

To satisfy the boundary conditions and reduce the boundary value problems to ones

independent of 8, let
Y = 8in 6 ¥q (r,2), ¢mn = 8in 6 @, (r,2)

The boundary value problems become

2 2
oh 43 3 ¥
— tr 3 T v+ Pl 0 (interior to ABCOA)
ar r dz
! o¥1 24
SlIlB -a—r— - Co ﬁ g;— = ——5 smB (on ABC)
and
2
229, ; 3@y 1 3%,
5 T3 T o+ 5 = 0 (interior to ABCOA)
or ' r 0Z
3¢, K,
=~ =T $, (along BC)
o 0%,
sin B el cosf 37 0 (along AB)

With this formulation the forces and moments reduce to

Ty=-w;I1p 65 - M 2;1 Yn IL(bn b)) a3 bn bn by

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)



@
*_ e
Fi'= - ag M6;3 - M e, 6 —Mrf‘;lynbngndiz (3.16)

where

Vynbn=1'r/Br2§>n (r,L) dr

c
B
K, Vyghy =21 [ 2r &, (r,2) dz Y (3.17)
A
B 2
Vyn=1rL/ r[@n(r,L)] dr J
c

B
L1=p / (rz cos2g + z2) dv - 4p f 22 dv + 2pL21rf zr ¥, dz
uv uv A

The pressure and surface wave height are given by (3.3) and (3.4).

A digital computer program has been developed to find the coefficients in (3.17) along
with the eigenvalues and eigenfunctions for any tank whose cross section is composed
of portions of ellipses, circles, parabolas, and/or straight lines. The method will
handle any ring-shaped tank or baffles which are adjacent to a rigid wall. The pro-
cedure and program are described in Report GDI A-DDE64-062 (see Reference 2),

3.3 CENTER OF MASS NOT COINCIDENT WITH THE CENTER OF ROTATION

3.3.1 Analytic Hydrodynamic Formulas. The motion of the liquid in a missile tank
will obviously interact with the control system and vehicle dynamics. In order to in-
corporate the liquid effects into an analysis of the entire missile behavior for control
purposes, the pertinent quantities must be referred to a coordinate system, fixed in
the missile, which is no longer located at the center of gravity of the liquid.

For a threeldegree-of-freedom analysis, the origin will be translated along the Xg-
axis to a point, L, below its original position. Call this new coordinate system xi'.
The problem is described by (from (2.30) and (2. 29))

2 4
1 —ay—p—,= 0 (throughout the volume of the liquid) (3.18)
p 3x; 3X{
1 dp’ . ok
5 vy 7 = -y (@1 + € O; X +%;) (on the boundary) (3.19)



The primed system is related to the unprimed system with origin at the center of
gravity of the liquid by

Thus (3.

X' = X1, %) =Xg, X3’ =%xg+ 1L (3. 20)
. 8 _ 9 /
. axi, = aXI and Vi = vl

18) and (3.19) become, for three degrees of freedom

2
1
el (3.21)
p oX; oX;
1o . »
o Ui axi— - a2 Vg - CU3 vy -~ Q)l (Xz vy - (X3+L1)U‘;) v xi (3. 22)

Since the procedure used from this point on is exactly that used in Section 2, many of
the details will be omitted.

Assume

where

%:"“2"2'03"3'“’1 (xy-Ly)xg - L2 gy | + &+ CO) (3.23)

2 2
37 d(xq,X2,X3,t) 3 Y (xl,xz,x3)

= =0 (3. 24)
3%; 3% 3% 3X;
3y 2X3vg
v: — = 3 (over all surfaces) (3. 25)
Laxg 12
V. _éf =0 (over rigid boundaries) (3. 26)
1 aXl
(i?) =7 (3. 27)
3X3 Xg = L
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Again the dynamic condition used to determine 7 is that the pressure be independent
of position on the free surface. Thus from (3. 23)

(B) = C(t) -og L+‘-a2 Xy - Qg7 —o'.Jl n+L-Lg) X
pX3=L+T]

-2 ]+ 9 (3. 28)

where, to satisfy the dynamic condition, the bracketed term vanishes. Use the same
assumptions made after (2.42) to write the bracketed expression in (3. 28) as

agn=- agXg - l(L—Ll)xz—L2¢p1]+¢ (3. 29)

where j); and ¢ are evaluated at x3 = L.

Assume
n(x;,%g,t) = 2 2 £ ) O (x,%,, L) (3. 30)
m=1 n=1
L
(%, %Xg,Xg, 1) = - E Z — Eunl® $ynlp: %0 %3) (3.31)
m=1 n=1

Introduce (3. 30) and (3.31) into (3. 29), and expand the remainder of (3. 29) in a series
of ¢,,n(*1:Xg, L). Then use the results of Appendix B to write
Kmn

5mn+a3T£mn -K b a.+K nwl le

mn "mn -9 mn

~L(bpy - hmn)] (3.32)

With this formulation the pressure will be written as

%: C(t) - ay Xy - @y X5 - &) [(x3 - L) xg - 1.2 gpll
® ¢
LY Y o Fom (3.33)

or in terms of the coordinate system x;’

p’ . 2
b Ct) —ay xp" - ag(xg' - L) - [Xp(xg"-21y) - L7 g (x{, X5’ X3"- L)



o Pmn (%15%3 %3 - Ly)
-L 2, K € mn

m=1 n=1 mn

(3.34)

The forces on the liquid tank system have the components, referred to the x;’ -axis

3xi’
7 _ ! _ I 4 a
Fy —/p’yidS-fp Vi ax.’db
S S J
= /x v 30 ds (Theorem III)
iYj axj'
ap’
= [ =5 dV (Theorem I) (3.395)

- 2
v %%

Use the value of the pressure from (3.34) in (3.35) and integrate (the details are
given in Appendix E) to obtain

7 _ _ .

-M Z_l z_: amn Ymn [amn 657 * Prn B2 (3. 36)
m=1 n=1
The moments may be calculated from
T{ = [ egpen v o' 98
S

4
= [e. % 2P gy (Theorem V) (3.37)
v ijk ] axk

Substitute the value of the pressure from (3. 34) into (3.37) to obtain (see Appendix E
for the details)

’_ . ’ ’ ’ *® *®
T; = MLjayb;; “"1|111511 -1y 612‘131513‘ MY Y Ymm [a3bmn£mn
=1 n=1

+|L® g B = L1 D) Emn 631+ |- % 2mn b * [ L @y

~dpn) *1q amnl.émn] 6ip + [L(emn ~fron) Emn] 513] (3.38)



where

2, .2 2 2 2 )
111'=pf (xg +x3)dV—4p/ Xg dV+2pL2/x3y2¢1 dS+L; M
uv uv Us
2
uv Us
2
I3l'=p/ x; X3 dV - 2pL /xzulgplds
uv Us y

If the tank has symmetry about the axis of constant acceleration, then referred to
cylindrical coordinates as in Section 3.2

! 1
Ipg =137 =0

Thus, (3.39) reduces to
Ty= agMLy-&; 4] -M Zlyn{a3bngn+[L(bn-hn)-L1 by £ (3. 40)
n=

(3.36) reduces to

r_ . * .
Fi = —a3M 513 ‘0[2 M612+ wl Ll M6]'.2_M 21 bn‘)’ngn 6i2 (3.41)
n=
I WA
3.3.2 Parameters for a Cylindrical Tank,
The analysis of the previous section is reduced
for a right cylindrical tank of radius a. In
Figure 3 and the following analysis,
e W B T L
_I!- d = distance from the c.g. of the
‘ liquid to the tank bottom
— T
' L = distance from the c.g. of the
d a liquid to the free surface
_L L, = distance from the c.g. of the
CYLINDRICAL liquid to an arbitrary point along
COORDINATES the missile axis
(r, 6, z)

Figure 3. Cylindrical Tank



A ~ roots of J;"(x,2) =0, h= L+d (3.42)
Jl’ I ~ Bessel functions of the first and second kinds, of order one
Wy = -4

The solution of (3,10) subject to (3.11) is

eing |(-1)“-1| I, (r—‘%—r) cos(%’l) (z+d)

4 @
¥y = ‘;2— (L-d)r+§ 3 3 (3.43)
o=l (n_n) /(3T a
h 1( h )
From (3.12), (3.13), and (3.14)
@ = cosh X (z+ d) Iy A, 1) (3. 44)
K, =L, tanh) h (3.45)
Thus from (3.40) and (3.41)
Fg = -ag M (3.46)
' .o © .
Fy =—Ma2-L1M19—MZIbnyn £ (3.47)
n=
T = ML ap+ 1,/ 3 -M 3 b
1 1 %2t 111 & n |3 n &n
+|L(bn-hn) ‘lenlﬁnl (3.48)
where
. a3Kn e
E ot gy - Ky by @y + K [L(bn-hn)-L1 bnl K (3.49)
The constants in these equations are given by
L ho L ) [eoshagna A )] (3. 50)
TnTan T Ty22) 0 1 O 2) '
n
cosh x hJ,(x,2)
Yn P, = (3.51)

ahxi
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2na cosh) h-1
Vy, K, by =—>;1— I 0 @) [L sinh }_h - (Tn—) (3.52)

I 4 2 _42
_11=1,[___a (i‘+d)-(L3+d3)a2]+ 27a a(L—d)Z(L ~ 49

nga
o (1 a2 R
+:1_>:|() l 1h> (3.53)
h n=1 5
HANES
(h ) 1\ h
The surface wave height is given by
n=s8inf 3 En(t) coshA hJ; (\,1) (3. 54)
n=1

3.4 MECHANICAL SYSTEMS, In general, Lagrange's equations tor a moving coor-
dinate system are, according to Kirchoff

d aT) 3T

dat \3u. ijk “j 30, 3.55
dt (aui T €4jk @ duy, F, (3. 55)
d /3T 3T 3T

dt (awi>+ €ijk i 3wy, T ik % By M, (3. 56)
d/3dTy, T

at\3g./ " dq. 3,57
dt(aqn> 3qp, Qn ( )

where y is the ith component of the velocity of the origin of the moving reference
frame measured along the moving axes; w; is the ith component of the angular velocity
of the body measured along the moving axes; T is the kinetic energy of the system, i.e.

1 . .
=§}:m(ui+‘ijk w; Xy +X;) (ui+€izm wp xm+xi) (3.58)
X, is the ith component of the displacement of a mass particle measured relative to the

moving reference system - it is presumed that the relative coordinates, Xy, can be
expressed in terms of generalized coordinates and time, i.e.

Xj = Xj (ql,qz,q3, ....qn,t) (3. 59)
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F; is the ith component of the force acting on the mass particle measured along the
movmg axes; M; is the ith component of the moment action on the mass particle
measured along the moving axes; each a4, is a generalized coordinate which describes
a possible independent configurational state of the mass particle; and Q is the gen-
eralized force associated with Qe

Substitute the expression for the kinetic energy into Lagrange's equations to obtain,
in general

Zmlu +€1_]k Juk c‘)xk+w1w]x]—xlcu]wJ

+2€ijk wj Xy + Xy = Fi (3.60)

Zm] 1]kx] k+€1]kx xk+2w1x]x]-2x1wjx]+w u] xj'ui“’p’&)

- X, Wp €jjk W5 xk+u')i X X - X d’j X =M (3.61)

For motion in a plane, set wy = wg =u; =X, = 0. Equations (3.55) and (3.56) reduce
to

3T 3T
5 (auz) - 91 ;= F2 (3.62)
d /3T 3T
_— . 3
dt <au3> “1 duy F3 (3.63)
3T 3T 3T _
<8w1> Ug —— au3 ug a_ué 1 (see Reference 3, p. 528) (3. 64)

Note that (3.62), (3.63), and (3.64) are acting on the mechanical system. Thus, these
quantities are the negatives of the forces and moments produced by the system. This
property will be used when the equations for the mechanical systems are matched with
the forces on the liquid-tank system,

3.4.1 Pendulum Analogy. To duplicate the hydrodynamic equations by a system
composed of a rigid mass and a number of pendulums, it is necessary to derive the
equations describing such a system in terms of an accelerating coordinate system.
Consider the motion of a pendulum of mass m,, and a rigid mass of m, as shown in
Figure 4. In this system, with the x; axis out of the plane of the paper,
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Thus, the kinetic energy is given by

T——m ”u2+£ é‘] +u3!+-l (19)

+%mn| [“2 +3 (t, -1, cos Gn)+£[;én cos Gn]2

Figure 4. Pendulum

. , . 12
+[u3-1911’lsin6n+2nsin6n6n] I (3. 65)

The equation of motion obtained by using the generalized coordinate, Bn, is obtained
from (3. 57).

Thus
[2 Iu2+:9 (ln—lr'l cos@,)+ 21'1 én cos enl |£[’l sinenén, +{ 192[’1 sinenén
—ﬁx; (én)2 sinenl 11'1 cosg + —JL; sin@ --.91'; cosenén+ %é‘n sin@,

. 2 7 s Y ° % .
+l[’1(en) cosenllnsmen - +J(1n —ll;cosen)ﬂlr; encosenlléﬁsmen

2% s - . ay . ) sy
+ {—ln& smenﬂrnen smenl in&cosen} ] +uzﬂncos(;n+u3£n~.9cosen

+i1311; sin@, -uzléé sing, + |:9' (N —L"lcose)

, a0 ' Qn
+24, 6, cosenl £, cosB = -~ (3.66)

n

For small oscillations, assume _ and 4 to be small, such that s1n6 o~ 6 , cose ~1,
and the products of 6, and ¢ and their derivatives can be neglected because of thelr
smallness in comparison with the quantities themselves, Thus, the bracketed part of
(3. 66) vanishes and
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m_ 2! (g 9 ug) + g - up) B+ @ -2 Fr 0! 8 |- @, (3.67)
From (3.62), (3.63), and (3.64)

(m,+my) (Iy +:9u3)+[m0120+ my, (&, - £, cos 9)]03 +mn£é'6.n cos 6, -4, sinf, ({9)2
s Y . . 2
+ 24 sin@, 36, - 2,sin6, (6, =F, (3.68)
o H2 450 sing s 2wt/
(mo + mn)(u3 - uz) —Imoﬂo( ) + !ln sin@, + (¥) (ln -4, cosB)
., . D1 . . 2
+234) cos8, by - £ |smen(-)n + cosBy (B,) ” - T, (3. 69)
’ ° r 2 ’ 2
- lmolo +m (£ —JZn cosen)l |u2+19 u3| - lmoﬂo +my I(Ln—ln cos )
+2['1 sinzen] + Iol:ﬁ" + mnl['l (g -3 uy) sinf, - m (£
- £, cosB) (L, cos B ) en +my [(sinen '6;1+cos Gn(én)z)!;['1 sinf,
’ s e 2 % "2 . p
+ (n -, cosB) 4, sinb, (8))) -2¢ I(ﬂn) sin§, cos6, 8,
+ (1, -8 cose )L, sinenén” =M, (3.70)

Linearize (3.68), (3.69), and (3.70) to obtain

my 8’ [(h2+b ug) + (g -9 u,) 6, + (&, -2)S 0l 8 | =0 (3.71)
(m, +m ) (G - $u,) = Fy (3.72)
(mg +m ) (h2+:9 ug) + |m020+ m, (an-zr’l)] F+m 0!8, =F, (3.73)

_ [m020+mn(Ln-£I;)”f12+:9u3] - [mozf +m (2 -l['l)2+Io] e

-mn(fzn—ﬁl'l)l;,']é'n +m £ (g -Is‘uz) 6, = M, (3.74)
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For N pendulums, the equations become
. - L I (X ] l o0 _ _
u2+19 ug + (us-& u2) en + (ﬂn-ln)# +!;nen =0 (n=1,2,...,N)

<m0+ nz-—-:l mn) (ug - ¢ up) = F3

N . N w XN .
(m0+ > mn) (ag +4 ug)+ (mo!0+ ngl m, [’Ln -,QI'IDJ + n}: mnléen =F,

m=1 =1
DAV 2 X 12 .
- (mo£o+1§1 mn[!;n-ln])(u2+19u3) - (molo +nzz:lmn[ln —lnl +Io)19
N 1| o123 N ’ .
- L o] 4G ., ma b lig -F uy) =y
n= n=

From (3.32), (3.40), and (3.41), the hydrodynamic behavior is described by

1

——.‘é +a —_—
K b, >0 " "3 Lby

€n L1 by -L(by -hy) ..
+a,+ 4 =

2 bn

Y
-Moz3 = F3

.. o0 ve
- ’
-May - ML, ¢ - M Z‘lbnyngn—Fz
n=
/

MLjag+ 1] ¥ - an_l Ya 'a3bn§n + [L(bn-hn) -lenl Enlz T,

Thus the force, moment, and surface wave height terms will match for a finite
number of pendulums if the following associations are made
ug -4 Uy ~ ag

fx2+&u3~a2

N
m, + 2 mn~M
n=1

N
Mmoo * 2 My (fy ~fp) ~ MLy
n=
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(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3. 80)

(3. 81)

(3.82)



2 N , 2 ,
moly + S Myl -4) +1 ~1f
n=1
0 n
o~ Lby
oo~
n

K
n

Lyb,-Lb,-hy)
Iy ~ b YK
n n

2
m o~ My, by K,

N 2
m, ~ M(1 —nz_llytl b, Ky

N

Ly - ;1 ynannIlen'L(bn'hn)‘

n:

N 2
1';;1 YnPn Kp

’ 2 N ;.2
Io ~ 1 - moly = > my (e -4)

n=1

3.4,2 Spring-Mass Analogy. Consider also

a spring-mass mechanical system as shown
in Figure 5. The kinetic energy, T, of this
system is given by

T =

2 « 2
m0|u3 +(u2+1910) l

(SRR

1 . 2
+ 3 m, l(u3 -4 X;,)
+ (u2+3<n+:91n)zl

1. 2
+§IO1'9 (3. 84)
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X3

X2
Figure 5. Spring-Mass



From Kirchoff's relations, the linearized equations are

(m0+ mn) (ﬁ2+:9u3) + (moﬂo+mnﬂn):§ + mn')in = F2 (for each n)

(mg+myp) (g -Suy) = Fq
. 2 2 .
-(m f,+m £ ) (u2+1.9u3) —(moﬂ0 + mnﬁ_u +1,) 4

‘mn%s"n - m, X, (h3—:9u2) =M,

To obtain the last equation, let X, be the generalized coordinate, and include the

* 2
potential energy term Lagrange's equation is
d /3T oT *
— (=) - == =0
dt (axn) OXp * Kn¥n

mnl(h2+:9u3) + X, +f_n19] + K:xn= 0
Take a finite number of spring-mass elements; the equations become

Kf %,
m,

({12+:9u3)+3{n+2n:§+ =0 m=1,2,...N)

N .
(mg + ngi mp) (i, - Suy) = Fy

N . N e N
(m, + Zl my) (Up+dug) + (my2, + nz] mpL)é + 21 m X, = Fy
n= = n=

ot 2 2 .s
-(m, L, + g‘l mnﬂn) (u2+19u3)—(m0!2o + nil m &+ L) $

N N .
- z m £ X, +Z m, X, (u3—19u2)=M1
n=1 n=1
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(3. 86)

(3. 87)

(3. 88)

(3.89)

(3.90)

(3.91)

(3.92)



Thus, the forces, moments, and surface wave height will match the mechanical
system's equations if

2
N
m +z m, ~ M
n=1

2
m, ~ My, by Ky

o
x 23 2 2
Kn"'_L—Mynbn Kn
N 2
mo~M<1-Z ynann>
n=1
N
Ly - Z Yn Pn Kn [Ll bn'L(bn‘hn)]
n=1
L~
° 2
1‘% ynann
n=1
2 N 2
]
I,~In -m, L, "nz_lmnﬂn
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SECTION 4
CONCLUSION

In this report the hydrodynamic equations describing the dynamic behavior of liquids
contained in tanks of arbitrary shape are derived for a missile with six degrees of
freedom -- three rotational and three translational. These results are summarized in
Section 2. 2. 3,

For tne special case of three degrees of freedom (one translational component along an
axis perpendicular to the axis of constant acceleration and one rotational component
about an axis perpendicular to the two axes previously mentioned) the equations are
simplified and given in Section 3.

In order to incorporate the dynamic liquid behavior into an analysis of the entire mis-
sile for control purposes, the pressure, forces, and moments are rewritten using the
fact that the coordinate system is fixed in the missile but is no longer located at the
center of gravity of the liquid. This is done in Section 3.3.1 for a tank that possesses
symmetry about the axis of constant acceleration but that is otherwise of arbitrary
shape. In Section 3. 3.2 the appropriate quantities are given for a circular cylindrical
tank.

The equations of motion of two mechanical systems are presented in Section 3.4. The
parameters from the hydrodynamic solution are matched with the parameters of the
mechanical systems so that the corresponding equations will be identical.

This report is the basis of companion report GD| A-DDE64-062, which describes the
digital computer routine used to obtain the hydrodynamic parameters for tanks of arbi-
trary shape.
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APPENDIX A
ROTATING COORDINATE SYSTEMS

Assume that a rigid body is rotating about an axis in space. Let this axis be designated
by a unit vector which has components Aj when referred to the Cartesian coordinate
system yi", fixed in space. Let P:yf be the coordinates of a point at time t=t; (see
Figure A). Let the body rotate about axis \; through an angle 66 intime 6t. The
point P will move to P ':yi' , which lies on the arc of a circle with the center at C:§;

and having a radius of |[CP| = |CP’|. The components of a unit vector along the
directed line segment CP are

L= (A. 1)

Also, the components of a unit vec-
tor along the directed line segment
CP’ are

i - & Qp\Oﬁ c ol
oLt Y,

Draw a line from P’ perpendicular
to the line CP, intersecting CP at
N. The components of a vector
along the directed line segment NP’
are, since it will be perpendicular Figure A. Rotating Coordinates
to both the axis of rotation and CP

Vi = €ijk A R (A.3)

It is also true that the direction cosines obey the laws
Xi#i=0=2; 07 - &) (A.4)

Since g; are the coordinates of a point on the line with direction cosines });, it follows
that

£1 &3 &3

Al - AZ )t3



€m
£k=)\kr— (no sum on m, m=1,2or 3)
From (A.4)
w*
Ai€i= Ay

Substitute from (A. 5) into (A.6) to obtain

A A g—- =X ¥ (no sum on m)

i.e., since }‘i Aj=1
€m = Am Aj y1

The coordinates of the point P’, |CP| 7j» may be written as (see Figure A)
|CP|n; = |CP| cos 66 pj+ |CP| sin 56 vy

Thus, using (A.1), (A.2), and (A.3)

¥i' - &= O - £)) ©08 66 + €353 Xy (k- &) sin 66

* * .
6yi=yi - yvi= y'i*(cos 66-1)+ gi (1-cos§8) - Eijk’\j £k sin §6
+ A * . 9
€ijk Aj Yk sin b
The third term on the right hand side of (A.11) may be written as
* .

€ijk AjAkAm Ym Sin 66 = 0

since

Thus, expand cos §8 and sin §6 in a Maclaurin series to write (A.11) as

69)°

©8)3, ]
L

"(51 )[ J ukxlyﬁlae_

(A.5)

(A. 6)

(A.7)

(A. 8)

(A.9)

(A.10)

(A.11)

(A.12)



Divide (A.12) by 6t and take the limit as 6t and § 0 approach zero to obtain
* *
dy! !

D pim O * 46 A.13

dt  6t-0 6t = €ijk Aj Yk g (A.13)

1
where % = 61'6]110 g—-te is the angular velocity. The components of the angular velocity

referred to the system y{' are

de
Thus
*
dy; N
E = €jjk Q] Yk (A.15)

Equation A. 15 gives the instantaneous rate of change of a point on a rigid body due to
the rotation of this body about an arbitrary axis.

Consider a rectangular Cartesian coordinate system obtained from y’i" by a rotation
*
X{ = ajj ¥ (A.16)
The inverse transformation is
*
¥i = 245 X (A.17)

where

= *
aij = cos (Xi’ ¥ )

For a general rotation, a5 = ai]-(t) . Differentiate the identity a; aj = Gij with respect
to t to obtain

d d

Ak & ajk = - ajk I 3k (A.18)

The tensor in (A.18) is skew-symmetric; the following paragraph will impute a physical
meaning to this tensor.

Differentiate (A.17) with respect to time and use (A. 15)

d > _ d d _ +*
at¥i " lat aji] 5% g N T €ajk By Yy (A.19)

A-3



Let w; be the components of Qj in the coordinate system x

wj = ajk Qk or

i’ i.e.

Qj = ak]. wk

Assume that the point xj moves with the body so that

Then, from (A.17), (A.19), (A.20), and (A.21)

d
[&7: aji]xj " €4jk ®nj “n 3pk ¥p = 0

or, changing the dummy indices

d
[af aji] xJ ~ €imk 2nm ajk wy xj =0

Since (A. 22) must be true for arbitrary X;» it follows that

d
a 31~ €imk *nm 3k

From (A. 23) it follows that

“n

d
i & %i = €imk %pi *nm 3jk “n

“€pnj “n”

{Note that in going from (A. 24) to (A. 25) use has been made of the fact that

€imk api 4hm ajk =

Thus, the skew-symmetric tensor a,

d
3k at 3k T~ Sijk “k

'epjn “n

ap1
an1

a1

1

4p2 a3
4,9 an3 | = €pnj )
22 a3

d .
K -d—t-ajk can be written as

A-4

(A. 20)

(A.21)

(A. 22)

(A. 23)

(A. 24)

(A. 25)

(A. 26)

(A.27)



Assuming that the order of summation and integration may be interchanged, (2.54)

APPENDIX B

ORTHOGONALITY

becomes (after multiplying by ¢ij and integrating over the undisturbed free surface)

ZZ

m=1 n=1

_alf x1¢](x1,x2,L)dS azf X ¢J(x1,x2,L)dS

UFS

Consider

gmn(t) +ag gmn(t)] / ¢ n %1 X2 L) ¢ (%1, %g, L) dS =

X9 L- L2 wl (Xl,XZ, L)]¢1] (xl,Xz, L) ds

xl L- L2 d)z (XI,XZ, L)] ¢ij (Xl, x2, L) ds

UFS

XiXg - L2 Y3 (X)5 Xg, L)] ds

f b mn (%15 X2, L) ¢ij (%y,Xg, L) dS =

UFS

L
Kmn -Kjj

I UFS

[Kmn ¢

L mn

K

-¢ i

ij an

(no sum on i, j, m, or n) but from (2.47), (B.2) becomes

_ L / ’ aq”mn
=% P4 3xa
mn ij yrs ' 3
= bij vk ———
Kmn = Kij gg L 2 axk

3%5;

mn ax3

ds

a¢

mn VK axk

ds

(B.1)

(B.2)

(B.3)



The integration in (B.3) is over US, the UFS plus the rigid walls, and is valid because

of (2.47). Use the divergence theorem to write (B.3) as

(L i[ 9¢mn
Kmn—Kij uv axk 1 axk mn

=0, for Ky # Kjj, since d)mn is harmonic

Let

/ X] Pmp 48
_UFS

n
2
L/ $2 ds
UFS

f Xg b d8
- UFS

n
2
L/ ¢Z dS
UFS

/ P1 ¢mn ds
_ UFS

n
2
/ 2 ds
UFs

S ¥y Smn S
UFS

n =
T
UFS

/ X1 Xy (’bmn ds
UFS

2 2
L / ¢mn ds
UFS

a ¢ ds
_ UFS

[ o5,

UFS

bm

b

dm

€mn

fmn

>

(B. 4)



Thus, (B.1) reduces to

L ..
K. tmn(t) +og bmp= -y Lag, -ay Lib

. 2 2 . 2 2
- W [L bmn‘L hmn]""z [L a.mn-L dmn

. 2 2
- Wg [L €mn - L fmnl

or

. Kmn
Enn® + 93 7~ &mn =~ %1 K 2mn - %2 Kmn Py

- LKmn[bmn - hmn]wl -LK_, [amn- dmn]wz

- LKy [emn - fmn 9 (B.5)
Consider the integral
3¢
/ Yi ®n / i 7 L 8 ds (no sum on m or n)
Kmnn 9%
UFS 3
L L 3%mn
Kmn ﬁé‘S Vi Vi ax Kmn ﬁ/swl k Xy
By the symmetric form of Green's theorem
3,
_L i
/ $; Pmp 95 f ¢mnvka XK ds (B.6)
UFS Kmn Us
Thus, from (2.33), (2.34), and (2.35)
2
J by mn = = [ xgup Gmp s ®.7)

UFS mn gs



2
/ ¢)2¢mndS=LK /X1V3¢mnds
UFS mn ygs

2
./ ¥3 ®mn dS=LK /qul ®ran 98
UFS mn US

Define

_ L 2
Ymn =y / (Ppp)” dS
UFS

From (B.4) and (B.7) through B.9)

UFS

/ X9 ¢mn ds=V bmn Ymn
UFS

VXmn bon Ymn

/ Xq Pmn v dS = 2
Us

./ X] Pmp vy dS =
UsS

v Kmn dmn Y mn
2

/ Xl X2 ¢mn dS=V L emn 'ymn

UFS
VK __f_ vy
mn mn?mn
/ X3 Pmnv1 48 = 2
US

(B.8)

(B.9)

(B. 10)

(B.11)



APPENDIX C
FORCES

The substitution of (2.53) into (2.57) yields
2 %Y1
= 94['0‘3513‘ @y 6y - @264 - <x2 i3+ *3 852 - L gx—) Wy

2 54’2 . 9 awB .
- <x1 bjg + X3 651 - L 3%, )“’2 - (xl bjg * X3 651 - L % )“’3

1 a¢mn

LY L g a gmn]dv (C.1)

Consider the integral of each term separately. The first one becomes
o/ [‘ g 513] dv=pV [- a3 513]
\Y
since g is independent of the space coordinates.

In the remaining integrals, write the integral over the actual volume as the sum of two
integrals, one over the undisturbed volume and one over the difference between the
actual volume and the undisturbed volume, Since each term contains a multiplicative
factor of o or w , the second integral will be neglected in keeping with the neglecting
of second-order mfm1tes1ma1s Thus, the volume integrals become integrals over the
undisturbed volume, and the second and third terms in (C.1) may be written as

pf |- o 63 -0 83p] AV=-pVay by -pV @z by (C.2)
Since the origin of the x; system was chosen at the center of gravity of the fluid

S xdv=0 (C.3)
ov



Consider

3
U{/ﬁ av = /[ yv, ds

Therefore

AP 2x, p
S Lav- /xi 372 4s
uv o

Also

(by Theorem I)

(by Theorem III) (C.4)
(from (C.4) and (2.33))
(by Theorem I)

(C.5)
(from (C.4) and (2.34))
(by Theorem I)

(C.6)

(from (C.4) and (2.35))



g 9
_/ &—dv = — (x Xg9) dV (by Theorem I)
uv 1

=_32/5 x, dV = 0 (C.7)
L° UV

Thus, from (C.4) through (C.7), the integrals of the fourth, fifth, and sixth terms of
(C.1) vanish,

Consider

3¢
/ ax.mn dv = / ¢ n Vi 95 (by Theorem I)
uv ! US

-/ / 3y o
® nVi a—; ds = X; Vj o 2 ds (by Theorem III)

Us
Kmn
=— f X; ®nn 9S (from (2.47)) (C.8)
UFS
Thus, from (C.8) and (B.11)
3¢ K
mn mn
f dv = Va_ 'y (C.9)
uv %M1 L omeimn
3¢ K
mn mn
dv = Vb__y (C.10)
I4 dXg L mn ‘mn
a¢ 3¢ 1
3 x3 vj ax ds (from (C. 8))
uv °73
3¢
- f Ly a;‘m ds (from (2.47))
Us j
3% ¢
mn
= f L dv=20 (by Theorem I and (2.47)) (C.11)
A



Substitute the values of these integrals into (C.1) to get, letting M = pV

@© @

* .
Fi=-Ma; -M 21 Zl Emn Y mn (@pn 041 * Prn 8i2) (C.12)
m=1 n=



APPENDIX D
MOMENTS

Substitution of (2. 53) into (2.59) yields

Ty = p.‘//:‘ijk 5 [‘“3 bg = @1 01 ~ @2 6o ‘(Xz b3 * X3 Ok

2 oY1\ . L2 Pa\ . 5
-L ax,) 171 bka * %3 0 <1 5 )92 7M1 Oka
3 o ® ¢
2 3\. 1 mn ..
+ X, 6 L———-)w;;—LZ S o/ 5 ¢ ]dv (D.1)
2 k1 mn
o m=1 n=1 Kmn axk
Consider the first term
A(X; Xq)
- i3
p/- ag €5k Xj 83 AV =-pag f‘ijk -—a;l:— av
Vv A%
= -pag 4‘ijkxj X3 Vk ds (by Theorem I) (D.2)

Write the surface integral in (D. 2) as the sum of two integrals, one over the undisturbed
surface and the other over the difference between the actual surface and the undisturbed
surface.

f Eijk X; X3 V. ds = / €5k X; b3 dV =10 (see (C.3))
Us uv

S-US FS UFS

-/ €5jk Xj M vk 98 (D.3)
UFS

(In deriving (D. 3) the difference between the actual liquid surface and the undisturbed
liquid surface on the walls of the tank has been neglected, and, since 7 is considered
to be small, the integral on the right side of (D. 3) is over the undisturbed free surface
instead of the actual free surface. This is in keeping with the previous assumption to
neglect products of infinitesimals.)



Substitute the value of 7 from (2. 49) into (D. 3), and interchange the orders of integra-
tion and summation to obtain

[+ 2]

m=1 n=1 UFS

|

I
©
R

w

- vV —
pag / €ijk Xj Mk 98
UFS

o2 X

-pag S £mn [5i1 f X9 $n (X1, Xg, L) dS
m=1 n=1 UFS

-6;9 / Xy ¢>mn(x1,x2,L)dS]
UFS

o] 2]
-pag > > &mn [511bmn VYmn
m=1 n=1

i

—612 amn V‘)/mn] (D‘4)

The integrals of the second and third terms are zero, since the origin of the x;-system is
located at the center of gravity of the liquid, The volume integrals of the remaining terms
are taken over the undisturbed volume for the same reasons as given in Appendix C.

Consider the integral of the fourth term

o
2 1

1 =/ €:ii0 Xi Xo + €..5 X, Xo{dV - L / €. X — dV
i,w ij3 4 *2 ij2 3 ijk )
1 UV, Ja ) I uv J Xy

_ 2
= [{;’ Ieij3 Xj Xg+ €ij2 X x3' dv - L U/S Gijk X Y v dS (by Theorem V)

Thus
2 2 2
Ilw=/(x -x_)dv - L /(xu - X3 vo)Y ds
uv UsS

Y
2 2 2 1

=f(x -x_)dV - L fu.xzx —ds
2 i 3 ax,
oV 3 Us 3%;

+2L2 / X3 Vg gpl ds (by Theorem IV)
Us
2 2 2 ZX3vy
= [ &y -x%)av-L Sy xg —2ds
uv US L

+ 2L2 f Xavy ¥y ds (from (2.33))
Us



2 2 d 2
Il,w1= /(x2 -x3)dV—2/ aT(x2x3)dv

uv uv 2

+2L2f X3 v, Py dS (by Theorem I)
Us
2 2

:/(x +x)dV—4/ xde+2L2/xu1p ds (D. 5)
273 3 3¥2¥%1

uv uv US

Define I,, = pIj w;® Similarly

2
IZ,wlzf_xlxde—L f(x3u1—x1u3)zp1d8
ov Us
oY
2 1
uv Us 1

+212/ xqvg9; dS  (Theorem IV)
Us
2 XqVo

2
/-—xlxde-L /x3x1~——2——dS
Us L

+ 212 / X1 Vg P, dS (from (2.33))
Us

- / Xy Xg dv + 2 L2 / Xy v3 ¥1 dS (Theorem I) (D.6)
uv Us

Define I,; = 'pIZ,w1° Finally

- 2
13,(‘)1—/ x1x3dV—L /(xluz—xzyl)gplds

uv Us
Y
= / X1 X3 dv - L2 / Vixlngx—lds+2L2/ Xguq Y7 dS (Theorem IV)
uv UsS i Us
2X,p
2 2 2
= x1x3dV—L /x1x2 5 dS+2L /x2vl¢p1ds (from (2. 33))
uv Us L Us
= / X) XgdV -2 f a% (xq xgx3)dV +2 L‘?‘/ Xouq ¥p dS (Theorem I)
uv uv 2 US
= 2
——/ x1x3dV+2L /le}llblds (D.7)
uv UsS



Define 131 ==-P 13’w1.

Consider the integral of the fifth term

oY
- 2 _2
Ii,wz = / Ifij3 xj Xy + €51 X5 x3| dv - L / €ijk xj % dv
uv uv
= /ls X: X1 +€::1 X, X ldV—sz Xi o Vi dS (Theorem V)
i3 % 71 7 Cij1 %5 78 €ijkj¥2 Yk
uv Us
Thus
2
Il,wZ:/ Xl X2 dV—L /(X2V3—X3U2)w2 dS
uv Us
3y
2 2
= / Xy Xg dV - L f viXg X3 5. ds+2 1.2 /X3v2§b2 dS (Theorem IV)
uv UsS 1 Us
2x4V
2 13
= / X; X dV - L / X9 Xg dS+2 L fx3V2¢,D2dS (from (2. 34))
uv Us L2 Us
= f X) Xg dV - 2/ (x1 X9 Xg) dS+2 L /x3v2¢12ds (Theorem I)
uv Us
:-/xlxde+2L2f x3vz¢2ds (D.8)
UsS uUs
Define I12 = -p Il, wg" Similarly

/( x1+x Hav-1® [ gy -xvy) ¥y d
ov Us
%,

/( X, +x )dV L /v xlx3(3 dS+2L fx1v3w dS (TheoremlV)
uv Us

2 2 2
=/(-x1 +x3)dV-L fX1X3
uv Us

2
dS+2L /xlv3§02dS (from (2.34))
Us
2 2 3 2 2
= f(—x1+x3)dV—2léax3(x1 X5)dV+2 L U/lev3¢)2ds (Theorem 1)

_/(x *X, )dV 4/ X dV+2L2 /x va¥,ds (D.9)
uv uv US

D4



Define Ipg = pIZ,wz' Finally

_ - _12 -

13,0) —/ XgXq dV - L /(x1 V, - Xg V1) ¥,dS
2 yv US

oy,

=/ -x2x3dV L /v X1X2 dS+2L _/xzvliPzdS

uv

=/—x2x3dV-L2fx1x2
US

uv

2x,V

5 ds+2L? f xgV) ¥, dS
=- [ X,X dV+2L2 X, V,¥9dS Theorem I
oV 273 271
Us
Define 132 = -PI3,w2.
Consider the integral of the sixth texrm

d¢p3

2
f (€352 %% + €1 XjX)dV - L f‘ijkxjﬂdv
uv

2
= f‘fijzxj"l*‘ijlxsz)dV‘L /‘ijkxj%"kds
uv Us

Thus

2
Il’wszf—x:;xldV—L f(x2V3—x3v2)1P3dS

uv Us
oy
_ 2 _3 2
= /—x3x1dV—L fvix2x3 " ds+2L fx3v2¢3ds
uv USs 1 Us

2x,V
2[ 2 2
= f—x3x1dV—L x2x3———2—dS+2L I{Sx3v2¢3ds

uv Us L

2
=—f x3x1dV+2L fX3V2‘/)3dS
uv UsS

Define 113 = -le’ w3. Slmllarly

2
12,w3: fx3x2dV-L /(x3v1—x1v3)‘P3dS
uv Us

(Theorem IV)

(from (2.34))

(D.10)

(Theorem V)

(Theorem IV)

(from (2.35))

(Theorem I)



2 e 2
Iz,w =/x3x2dV—L _/Vixlx3a_xf dS+2L /xlu3‘P3dS
3 Us 1 Us

uv
2XoV
2 2¥1 2
= /x3x2dV-L /x1x3 —‘"-2-——dS+ 2L /x1v3¢3ds
uv Us L UsS

9 2
= fx3x2dV—2/a—x1(xlx2x3)dV+2L /x1v3l,b3dS
uv Uv us

2
=-/X2X3dV+2L fxlv3¢3dS
uv Us

Define 123 = -plz’ w3. Finally

2
13’&) /(x -X )dV L U/S(x1 9 ~XgV;)¥gdS

(Theorem IV)

(from (2.35))

(Theorem I)

2 ¢
/(x -X )dV -L /u X X 28 S{ZL XgV1¥3dS (Theorem IV)
uv
2
f(x -x )dv L f xz lis+aL fx2u1¢3ds (from (2.35))

J

/(x -x; % av - 2/ S xz)dV+2L/ X,y by dS
té(x +X )dV 4/ X, dv+2L /x2v1¢3ds

Define I3 = PI, .
'@3

(Theorem I)

Consider the integral of the last term, and assume that the order of integration and

summation may be interchanged.
ad’mn

Ii,mn - / €ijkxj d
uv *x

/‘ Q
dv = / € Fy (Xj ?an) 4V
uv k

= ./ Eijkxj ¢mn.vkds
Us

(Theorem V)



Thus

Il,mnzé(x2v3_x3v2) ?an 95

/V x2x3 a dS 2/ XgVq mn dS (Theorem IV)

It

VEKmnYmn ®mn — Pmn) ((2.47) and (B.11))

Similarly

Iy mn = /(x3”1 X Vg)
Us

)
(pm
= fu xyx3 5 — dS -2 f Xy Vg & dS (Theorem IV)
US US
=VK Y @ -dyn) ((2.47) and (B. 11))
Finally
13, mn = /vy - xpvy) a8
Us
0¢
m
= / ViXpXg 3. dsS - 2 / XgVy d)mn ds (Theorem IV)
us
=VK_ Y e - fn) ((2.47) and (B. 11))

Combining the values of the various integrals into (D.1) yields

Ti=-u [111511 -1y 055 - 13y 13] I I12041 +Ipy 855132013 ]

- w3 l I130% ~Ip30i2+ 133 131 M Z Z mnHL(bmn hran) mn
m=1 n=1

T ag bmn mnl B IL(amn_dmn)gmn'a:} 2mn Emn’ 612

lL(e mn) .émnl 613 ]






APPENDIX E

CENTER OF MASS NOT COINCIDENT WITH
CENTER OF ROTATION

The substitution of (3.34) into (3.35) yields
25{01 (xi’xé)xé - Ll)

/

’ __ - _ - I_ ’ _
Fi“Pé a3b;3 - @309 ‘“1[512("3 2Lq)+ X903~ L

Bxi
- o 3% mn (x{,%X3,%3 -L1)
-L Z Z K 3x/ £mn dv
m=1 n=1 mn 1
- Fi ’
\'%
Py (X1, Xy X ~ Liy)
1V 72273 1
- 1.2 - ]dV
axi
3 (x],%x4, %5 -Ly)
© © e 1 mn'\t12 7273 1
PL S Y Emng / ~ dv (E.1)
m=1 n=1 mn y 1

As in the previous appendices, integrals will be taken over the undisturbed configuration
if a multiplicative factor which is assumed to be small occurs, Consider
7

3] (x, X5, X5- Ly)
S

2 dv

p @y /[512("5‘211)* X5649 - L
v

! ]
AS AL PALNY 4"3 dV+pbig {xz dv

(x4, x5, %5 - Ly)

2 1V"1° 7273 1

-pL f 7 ]dV
A"

o%y
Now

’ - —
[ xiav= [/ (gt Ly dv=LV
uv uv

4 — —_
/xde—/xde~0
uv uv



f—l /5_1 V=0 by (C.5)
Uv

uv
and ( -L,) 3P (%y,X,,X,)
X ] )
1a » X 1 m 1'72° 73
f mn 2 av = / na av
uv X v *i
_ mn VY mn
=={ [?mnbi; *Pmn 512]
Thus
' _ _ . - 2
Fj = -agMb;3 - agMb;, + vy Ly Mb;, Z gmnymn [amn i1
m=1 n=
+ Bron Oz (E.2)
The moments are given by
’ .
T = P/‘ijk Xj 1~ %30k3-@20Kk2 - [5k2 (%3 =2 Ly) + X563
o 1 3¢,
© © mn 1 o
- — d .
. BXk] 2%, Ky cmm <V (53

m=1 n=1

The integrals will be taken over the undisturbed configuration if a multiplicative factor
which is assumed to be small occurs. The integral of each term will be considered

separately,
Consider the integral of the first term

3 (x] x3)
"pa3-é€ij x! dv = -pa3/ellk—a-)t—- av (E.4)

= -pa3-é€ijkxj’ X3 ude = -pag L{; Gijkxj,xévl;ds

I 4 [4
+ f eijkxj X3 Uk dS]
S-USs



But

’ ! ’ — ’ = . =
/eijkxj x3yde—f Eijkxj 6k3 dv f Eij3 deV 0
US uv uv
-pag / x x3 Vi dS~ -pag [/ El]k Jxé Vl-': ds

/ !
- / ‘ijkxj (L+ Ll)uk ds
UFS

=-pag / €ijk X{ (L1 + L+n)vy dS
FS

+pag f €55k %) (L+Ly)yy dS
UFS

= —pa3 / Eijklenvl; ds
FS

x

= ‘a3Mz z Emn? mnl mn8i1 ~2mndiz2| (E-9)

m=1 n=1
Consider the integral of the second term

-pay /| ‘ijz’%'dvz'pazf fijzxjdV‘Psz/fszldV
uv uv Uv

=L, Ma,8; (E.6)

Consider the integral of the third term

uv

9 2 9 '
ax{( (x3) (X§ -21L)-L ax,;‘pl (X1 X9, X3 = L)

(E.T)
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Fori=1, (E.7) becomes

L] 2
_pwll_/ [5132"5 (xé-2L1)+5123xéxéldV-L /(Xéyé—xéyé) w{ ds
uv UsS
APy

N . 2_ 2 1ot l___l_
= -pwy I'J/-'lez (x3+L1)(X3 Ll)ldV L Iéukxzxsaxl,( ds

+212 [ x4ub ol dsl
Us

3y,
_-pwllf x +x dV 2/x dV+L V-L /ykxzx:;g-;ds
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&Y

2 1 2 2

121y [ viexg s as+ 212 [ xgupu, ase 2121 [ vy, o
Us k Us Us

=-pu')1[f(x22+x32)dv-2f x:,’zvarlev-z/ Si—(xzx:)dv
2

~1.21, /x2 2 dS+2L f X3Vg, dS+2L L1J[X2ng_ll{dv

=-d

pf (x22+x32)dv-4pf x32dV+L12M+2pL2/x3V2¢J1dSI (E.8)
v uv USs

For i = 2, (E.7) becomes

-pd,

2
f 5213x{xédV—L /(xévl'—xl'ué){bl' dsl
uv Us
. 2 84) 2
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2
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P
2 1 2
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Use the boundary conditions on yy to write this expression as

. 2
=-pw1 - fxlxde—Z/x3x1u2dS-2Ll /X3y2dS
uv Us US

+2 L2 / x1u3¢>1ds|
Us

Apply Theorem I to get

-p / X) XodV+ 2pL2 fxlu3¢,b1ds}
Uuv Us
For i =3, (E.7) becomes

» 2
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uv us

2
=-pin | |} gL av-L® [ Gyup-xpu) g "S}
uv us

. 2
=—pw1 —/XIX3dV+2L /szllpl ds
uv Uus

Consider the last integral in (E. 3)

! ' I_
fa(pmn(xpxz’x:3 4 €iik Xi dV—_/G kXi{ Ppan Vi, S

y ijk 73 =7 ijk”j "mn ¥k
v Xy ! Us

For i =1, (E.11)becomes

./ €15k %y ¢mnvk ds + / €132 11 Pnvy 98
UsS us

o9
mn
=ffljkx'¢m veds -1y fv X2
s ) n“k 1 Os k axk
K
1 'mn
= ,/-eljkxj ¢mnykds - L / Xg ¢ mn 48
Us UFS

=VEKmn Ymn [bmn'hmn] B —I:_ v Kmn bmn Y mn

(E.9)
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For i = 2, (E.11) becomes

f €25k 5 Pmn Vic f €231 L1 Pmnv; 98
Us Us

= f €2jk %j Pmn Vi S+ 1y f ®mn V1 98
UsS US

i f ad)mn
= [{S €2jkxj ¢ mn Vi ds + L1 J Xy Vg st
=V Ky Y (3mn = 9pn) * n Iim“ Va_ Ymn (E.13)
For i = 3, (E.11) becomes
£S €34k X Pmn Vi 95 = V Ky v (e - fnp) (E.14)

Combining the previous results in (E. 3) yields

’ . ! ’ 4
T{= MLy a6, - wlllu i1 - 1of b1z - 1sf by

[IL ®mn 'hmn) -1y bmn, Emnt 23 by gmn] 651

‘Mi iymn
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+ “L(amn -dpn) + I amnl gmn - 038mn 5mn]612

+ [L ©n - frun) Emn]'ﬁw (E.15)

where

Ili=p£v(x22+x32)dv-4p I/J:Vx: dV+2pL2 U[Sx3 vy ¥y dS+LfM

Iof =pf Xy xde—2pL2[ xv3 ¥, dS } (E.16)
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